3.175 \(\int \frac{\cos ^{\frac{5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=100 \[ \frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{\sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

[Out]

(-3*EllipticE[(c + d*x)/2, 2])/(a*d) + (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (5*Sqrt[Cos[c + d*x]]*Sin[c + d
*x])/(3*a*d) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.101456, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2767, 2748, 2639, 2635, 2641} \[ \frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{\sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]

[Out]

(-3*EllipticE[(c + d*x)/2, 2])/(a*d) + (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (5*Sqrt[Cos[c + d*x]]*Sin[c + d
*x])/(3*a*d) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2767

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(a + b*Sin[e + f*x])), x] - Dist[d/(a*b), Int[(c +
d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ[2
*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx &=-\frac{\cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{\int \sqrt{\cos (c+d x)} \left (\frac{3 a}{2}-\frac{5}{2} a \cos (c+d x)\right ) \, dx}{a^2}\\ &=-\frac{\cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{3 \int \sqrt{\cos (c+d x)} \, dx}{2 a}+\frac{5 \int \cos ^{\frac{3}{2}}(c+d x) \, dx}{2 a}\\ &=-\frac{3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac{\cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{5 \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a}\\ &=-\frac{3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac{\cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 1.25831, size = 289, normalized size = 2.89 \[ \frac{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \left (\frac{2 \csc (c) \sqrt{\cos (c+d x)} \left (\sin (2 c) \sin (d x)+2 \sin ^2(c) \cos (d x)+6 \sin \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec \left (\frac{1}{2} (c+d x)\right )+6 \cos (c)+3\right )}{d}-\frac{2 i \sqrt{2} e^{-i (c+d x)} \left (9 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+5 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+9 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{3 a (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
+ d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((
2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + (2*Sqrt[Cos[c + d*x]]*Csc[c]*(3 + 6*Cos[c] + 2*Cos
[d*x]*Sin[c]^2 + 6*Sec[(c + d*x)/2]*Sin[c/2]*Sin[(d*x)/2] + Sin[2*c]*Sin[d*x]))/d))/(3*a*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 2.333, size = 215, normalized size = 2.2 \begin{align*} -{\frac{1}{3\,da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +9\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) -8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+18\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-7\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+cos(d*x+c)*a),x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2)))-8*sin(1/2*d*x+1/2*c)^6+18*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{5}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cos \left (d x + c\right )^{\frac{5}{2}}}{a \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{5}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)